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ABSTRACT

Small domain estimation covers a set of statistical methods for estimating quantities
in domains not previously considered by the sample design. In such cases, the use of a
model-based approach that relates sample estimates to auxiliary variables is indicated.
In this paper, we propose and evaluate skew normal small area time models for the
Brazilian Annual Service Sector Survey (BASSS), carried out by the Brazilian Insti-
tute of Geography and Statistics (IBGE). The BASSS sampling plan cannot produce
estimates with acceptable precision for service activities in the North, Northeast and
Midwest regions of the country. Therefore, the use of small area estimation models
may provide acceptable precise estimates, especially if they take into account temporal
dynamics and sector similarity. Besides, skew normal models can handle business data
with asymmetric distribution and the presence of outliers. We propose models with
domain and time random effects on the intercept and slope. The results, based on
10-year survey data (2007-2016), show substantial improvement in the precision of the
estimates, albeit with presence of some bias.
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1. Introduction

Small area estimation approaches aim at obtaining precise estimates for geographic areas

or domains for which sample sizes are not sufficient to yield satisfactory precision if direct

estimators are used. The issue of small area estimation can arise from the demand for

information on a specific group such as when estimates for an industrial district or other

restricted segment are required.

The small area (domain) estimation problem has received much attention in recent

decades, in which Fay and Herriot (1979) and Battese, Harter and Fuller (1988) are two

key papers. The first considered an area level model in which the input response variable

is the direct estimate and auxiliary information comes from area level variables. Battese,

Harter and Fuller (1988) proposed a unit level model with both input and auxiliary vari-

ables considered to be available at the unit sample level. The Fay-Herriot model uses

data at the domain level, with greater scope for application compared to models at the

1National School of Statistical Sciences. Brazil. E-mail: andre.neves@ibge.gov.br.
ORCID: https://orcid.org/0000-0001-9819-2300.

2National School of Statistical Sciences. Brazil. E-mail: denise.silva@ibge.gov.br.
ORCID: https://orcid.org 0000-0002-5514-7558.

3Statistics Department of Federal University of Rio de Janeiro. Brazil. E-mail: fmoura@im.ufrj.br.
ORCID: https://orcid.org/0000-0002-3880-4675.



STATISTICS IN TRANSITION new series, Special Issue, August 2020 85

sampling unit level since aggregated data are more accessible and are less subjected to

statistical confidentiality restrictions. However, as pointed out by Moura et al. (2017),

the Fay–Herriot model assumes conditional normality of the direct estimator which is not

suitable for fitting skewed data, particularly for domains with very small sample sizes.

Neves et al. (2013) developed the first small domain estimation approach for Brazil-

ian economic surveys. The authors proposed a Fay-Herriot model for the logarithmic

transformation of the variable of interest to stabilize the variance resulting from the pres-

ence of outliers. However, due to difficulties when converting the results to the original

scale, a better alternative is to use an asymmetric distribution to model the direct esti-

mator. Ferraz and Moura (2012) modeled the direct survey estimator as skew normally

distributed. They successfully fitted the skew normal model to head-of-household mean

income for 140 enumeration areas in the scope of an experimental Brazilian demographic

census. Moura et al. (2017) compared different small area approaches for fitting skewed

data using real business survey data. It was the first experiment in which skew normal

models in a Bayesian framework were tested to produce small area estimates for the

Brazilian Annual Service Sector Survey (BASSS). The main objective was to develop

models for estimating service revenue totals by economic activity at levels of aggrega-

tion not planned in the BASSS sampling design.

Considering earlier research and corresponding developments, the principal aim of

this work is to extend the previous skew normal models to allow sharing information

from repeated surveys, such as the BASSS. We consider models to estimate gross ser-

vice revenue totals in specific groups of economic activities (class level four-digit codes

of the International Standard Industrial Classification - ISIC) for states in the Northeast

region of the country since these direct survey estimates are not currently published due

to small sample size and low precision (Neves, 2012).

This paper is organized as follows. Section 2 presents the Brazilian Annual Service

Sector Survey and the small domain estimation problem. Section 3 introduces the skew

normal models and their extensions to skew normal time models whereas Section 4

displays results and related analysis. Section 5 contains final remarks and suggestions

for future research.

2. Small Area Estimation for the Brazilian Annual Service Sector
Survey

Service activity comprises the production of intangible goods for immediate consumption

by individuals and institutions. Activities with these characteristics include commerce,

transport, advertising, information and technology activities, health and education ser-

vices, tourism and hospitality, financial and insurance services, and services provided by

the public sector.

Although important to the Brazilian economy, the service sector occupies a less

prominent position in public since industry is considered the most dynamic and impor-

tant sector. However, as all sectors are vital for the efficient integrated functioning

of the economy, reliable, detailed and timely statistics about the service sector are re-
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quired. The BASSS is a non-financial services survey conducted by IBGE since 1998. It

investigates economic and financial variables of companies, such as revenues, costs and

expenses, inventories, wages, number of employees and number of establishments. Since

firms control the accounting records of all their local units (establishments), where the

economic and financial results are registered, the BASSS survey unit is the enterprise –

the legally constituted unit that produces services.

Table 1. Disaggregation level of economic classification for which direct
estimates are published and services in the scope of this study

Service
Economic classification

4-digit code
(small domains)

2-3-digit code
(published estimates)

Food and beverages 5611-2 561
Engineering and architecture 7111-4, 7112-0, 7119-7 711
Advertising 7311-4, 7312-2, 7319-0 731
Renting and leasing of personal and household goods 7722-5, 7723-3, 7729-2 772
Travel agency and tour operator activities 7911-2 79
Cleaning and pest control 8121-4, 8122-2 812
Foreign language instruction 8593-7, 8599-6 859
Creative, arts and entertainment activities 9001-9 90
Fitness centers and other physical activity providers 9313-1 931
Other personal services 9601-7, 9602-5, 9603-3 960

The survey frame is a business register comprised of administrative records with ba-

sic information about companies, such as wages, number of employees and number of

establishments. The survey sample is stratified by economic activities and geographic

areas (states), and also according to the number of employees. In addition, enterprises

with 20 or more employees and those that operate in more than one Brazilian state are

allocated in a take-all stratum. The survey publishes total estimates, and corresponding

precision, by state and economic activity.

Here, we consider a subset of economic activities, focusing on activities in which the

enterprises operate mainly in one state. Table 1 above shows the subset of domains in

the scope of this study. Note that, for most of the country, direct survey estimates are

only produced by group (3-digit code economic classification) due to the survey sampling

design. Therefore, small domains are defined by the four-digit codes, listed in Table 1,

in each of the nine Northeast Brazilian states.
Depending on the geographic region, the survey provides information at different

levels of economic classification. For the South and Southeast regions, IBGE publishes

class level data (four-digit codes) of the National Classification of Economic Activities

(similar to ISIC). For the states of the North, Northeast and Midwest, survey results are

only available at the group level (three-digit codes), therefore, at a lower level of activity

breakdown (IBGE, 2018). Table 2 presents the number of enterprises and the sample

sizes restricted to the services enumerated in Table 1. It also contains the number of

small domains (defined by state and economic classification). We use 10-year data to

develop models that can also borrow strength over time.
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Table 2. Number of enterprises, sample sizes, number of domains and domain samples

sizes in the scope of this study by year

Year
Population

size

Sample

size

Number

of domains

Domain

sample size

Median Maximum

2007 46,056 730 81 9.0 17

2008 35,050 587 70 8.0 17

2009 37,733 637 72 9.0 16

2010 42,244 668 73 9.0 16

2011 46,501 675 74 9.0 15

2012 48,880 738 80 8.5 15

2013 48,976 665 76 8.0 16

2014 53,458 658 76 8.5 15

2015 52,019 660 80 8.0 13

2016 55,545 656 76 8.0 16

3. Skew normal small area models

Fay and Herriot (1979) developed a two-level linear model to estimate the average income

per capita in small towns with less than 1,000 people in the United States. This model

uses a direct estimator of the domain total and assumes residuals following a normal

distribution, with zero mean and known sample variance.

The Fay-Herriot model incorporates random domain effects to capture variability

between the domains that cannot be explained by fixed effects. The model is often cited

in the literature of small domain estimation. Because the Fay-Herriot model uses data

at the domain level, it allows a greater possibility of application when compared to unit

level models considering that aggregated data are more easily accessible and are less

subject to statistical confidentiality.

The basic Fay-Herriot model is defined in two stages. We denote by yd the direct

estimates of the true totals and as μd the response input variable of the model, where

d = 1, ...,D are the domains of study. These estimates have a sampling error εd that

depends on their respective sample sizes and the domain variability. Thus, the first stage

model equation can be written as:

yd = μd + εd – sampling model

εd
ind∼ N(0,φd), d = 1, ...,D

where φd is the sampling variance of the corresponding direct estimator, assumed known

for all domains. In the second stage (linking model), the true values are assumed to be

linearly related to a vector of auxiliary variables:

μd = xt
dβ +νd – linking model
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νd
ind∼ N(0,σ2

0 )

Errors εd and νd are mutually independent. Substituting linking model equation in sam-

pling model, we obtain:

yd = xt
dβ +νd + εd

Fay and Herriot (1979) assumed that the sampling variances are known and given by

their respective sampling variance estimates. However, these estimates are unstable for

areas with small sample sizes. There is a series of papers on joint modeling of survey-

weighted estimates and sampling variances, see for example Arora and Lahiri (1997),

and Gershunskaya and Savitsky (2019) for a recent discussion of this approach.

The Fay-Herriot model assumes that the sample size in each domain is large enough

to apply the central limit theorem (CLT). However, in real situations, the response

variable can be asymmetric, implying that assumptions of asymptotic normality are

unreasonable in several domains. To overcome this problem, a response variable trans-

formation, such as a logarithmic transformation, is commonly used. However, while

the lognormal model makes the asymmetry hypothesis more plausible, an exponential

function is required when estimates are converted to the original scale, increasing the

variability of the estimates. Moreover, Moura et al. (2017) found that the lognormal

model performs less well than the skew normal model in their application to BASSS

data.

3.1. Skew normal model

Azzalini (1985) described the family of skew normal distributions that preserve some

properties of the normal distribution except for the parameter that regulates the dis-

tribution’s asymmetry. This class of distributions includes the normal distribution as a

particular case and facilitates the transition from non-normality to normality. The prop-

erties of the skew normal distribution are suitable for asymmetric economic data. We

adopt Azzalini’s (1985) notation to describe the skew normal density function:

Y ∼ SN(μ,σ ,λ )⇔ fY (y) =
2
σ

φ
(

y−μ
σ

)
Φ
(

λ
y−μ

σ

)

where Φ(·) denotes the cumulative distribution function, φ(·) is the density function of

the standard normal distribution, and the parameters μ,σ and λ are the location, scale

and asymmetry, respectively. A particular case is the normal distribution when λ= 0.

The skew normal distribution has interesting properties, some of which are shared with

the normal distribution. The mean and variance of the skew normal distribution are

given by:

E(Y ) = μ +σδ
√

2
π

and V (Y ) = σ2{1−2π−1δ 2}
where δ is given by: δ = λ/

√
1+λ 2.
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Ferraz and Moura (2012) proposed the following model, here named Model 1, whose

joint distribution of the direct estimator yd and its sample variance estimator φ̂d are

described in the following expressions:

yd |μd ,λ ,nd ,φd ∼ SN(μd ,
√

φ d ,λ/
√

nd)

φ̂d |nd ,φd ∼ Ga
{

1
2
(nd −1),

1
2
(nd −1)φ−1

d

}
, d = 1, ...,D,

φ−1
d |aφ ,bφ ∼ Ga(aφ ,bφ )

μd |β ,σ2
0 ∼ N(xt

dβ ,σ2
0 ) (1)

where D is the number of small domains and nd is the sample size in the dth domain from

a population of Nd units. They assume that the parameters φd , d = 1, . . . ,D are con-

ditionally independent, following each an inverse-gamma distribution φ−1
d ∼ Ga(aφ ,bφ ),

with unknown common hyperparameters aφ and bφ .

For BASSS survey data, μd can be written as a linear function of area-level auxiliary

variables with unknown fixed coefficient and a random small domain effect β0d , i.e.,

μd = β0 + β0d + β1xd where: i) the parameter β0 is the global intercept; ii) β0d is an

intercept that varies by domain; iii) and β1 is the slope. The auxiliary variable xd is

the total wage by domain, which comes from the business register used as the BASSS

sample frame.

As the sample size grows, the skew normal distribution converges to the normal with

mean μd and variance φd . Our main parameter of interest is θ sn
d = Esn

d (yd), the expected

value of yd in the skew normal model, given by:

θ sn
d = μd +δd

√
2φd/π where δd = λd/

√
1+λ 2

d = λ/
√

nd +λ 2, with λd = λ/√nd .

The sampling variance estimator φ̂d is assumed to be unbiased, providing informa-

tion about the scale parameter φd . To borrow strength over domains, the model is

completed through a hierarchical structure with respect to the parameters β0d and φd .

The parameters β0d are hypothetically independent and distributed as β0d ∼ N(0,σ2
0 ).

The Ferraz and Moura model described by the equations in (1) is complemented by

assigning a proper and independent prior distribution to the hyperparameters. When

modeling the BASSS survey data, we assigned the following priors to these hyperarame-

ters: β = (β0,β1)
t ∼ N2(0,Ωβ ), aφ ∼ Ga(a,b), bφ ∼ Ga(c,d). To obtain relatively vague

prior distributions, we set Ωβ = 1000I2, where I2 is an identity matrix of order 2 and

a = b = c = d = 0.01.
It is worth noting that Ferraz and Moura (2012) considered σ−2

0 ∼ Ga(a0,a0), with

a0 = 0.01. Since we experienced difficulties in fitting some models with this prior, we fol-

low Gelman (2006) and placed a relative vague uniform prior on σ0, i.e., σ0 ∼U(0,100).
The selection of a prior distribution to the λ parameter must be done carefully. Ferraz

and Moura (2012), using results obtained in Sugden et al. (2000), proposed a normal

distribution for the parameter λ , centered close to zero and with standard deviation

given by σλ = 5.5aγ/2.576, where aγ is an initial suggested value or estimate of the γ
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asymmetry coefficient. For BASSS survey data, we estimated aγ= 4.7. Therefore, the

prior for γ was fixed at λ ∼ N(0,100).

3.2. Skew Normal Time Models

In this section, we propose to generalize the skew normal model by introducing an extra

random time effect (Models 2, 3 and 4). Models 2 to 4, showed in this section, take into

account information from domains over time. As mentioned in Section 2, the BASSS

data used here cover a 10-year period from 2007 to 2016. The models are developed

to estimate the total gross revenue from services for 2016, the final year of this series.

Therefore, Model 2 is written as:

ydt |μdt ,λ ,ndt ,φd ∼ SN(μdt ,
√

φ d ,λ/
√

ndt)

φ̂dt |ndt ,φd ∼ Ga
{

1
2
(ndt −1),

1
2
(ndt −1)φ−1

d

}

φ−1
d |aφ ,bφ ∼ Ga(aφ ,bφ )

μdt = β0 +β0d +ζ0t +β1xdt

where d = 1, ...,D denotes the domains of study in all years t = 1, ...,T and ndt is the

sample size in the dth domain in year t from the population of Ndt units. Note that μdt

can be written as a linear function of area-level auxiliary variables with unknown fixed

coefficients, a random small domain effect β0d and a random time effect ζ0t . Because

the sample size for each domain does not vary much over the years, we assume that the

true sampling variance of the direct estimator is constant over time.

The distributions of the inverse of scale parameter φ−1
d , as well as the parameters aφ

and bφ are the same as in Model 1. The distributions of the random coefficients under

the influence of their respective random effects are defined by:

β0d ∼ N
(
0,σ2

0
)
and ζ0t ∼ N

(
0,σ2

ζ0

)
We assigned a uniform prior distribution to the standard deviations σ0 and σζ0

. As

discussed in Gelman (2006), the use of this prior guarantees a proper posterior density

as well as other desirable properties. Thus, the relatively vague uniform priors for the

standard deviations of both domain and time random effects on the intercept are:

σ0 ∼U (0,100) and σζ0
∼U (0,100)

In addition, the following constraints are imposed to ensure identifiability of the param-

eters:

β01 =−
D

∑
d=2

β0d and ζ01 =−
T

∑
t=2

ζ0t
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3.3. Skew Normal Model with Random Effects on the Intercept and Slope

Following Moura and Holt (1999), Model 3 includes domain and time random effects

on the intercept and a domain random effect on the slope, whereas Model 4 considers

domain and time random effects on both intercept and slope:

Model 3: μdt = β0 +β0d +ζ0t +β1xdt +β1dxdt

Model 4: μdt = β0 +β0d +ζ0t +β1xdt +(β1d +ζ1t)xdt

As in Model 2, independent uniform priors with mean 50 are assigned to the standard

deviations of both domain and time random effects, as follows:

σ2
0 – variance of the domain random effect on the intercept,

σ2
1 – variance of the domain random effect on the slope,

σ2
ζ0

– variance of the time random effect on the intercept,

σ2
ζ1

– variance of the time random effect on the slope.

The identifiability constraints are given by:

β01 =−
D

∑
d=2

β0d , ζ01 =−
T

∑
t=2

ζ0t , β11 =−
D

∑
d=2

β1d and ζ11 =−
T

∑
t=2

ζ1t

3.4. Skew normal model with random walk effect

Rao and Yu (1994) proposed an extension of the Fay-Herriot model to handle cross-

sectional and time-series data, see also Molina and Rao (2015) for further explanation

and extensions. Unlike Rao and Yu (1994), Datta et al. (1999) employed a Bayesian

method to implement a time series cross-sectional model with random walk component to

estimate unemployment rates of U.S. states. Since it is reasonable to suppose influence

of lag random effects when working with economic data, we also considered another

model that includes an addictive random lag term effect of first order:

μdt = β0 +βd +β0d,t +β1xdt

where βd ∼N(0,σ2
0 ) and β0d,t ∼N(β0d,t−1,σ2

ξ0
) and they are all assumed independent. In

Bayesian framework, it is also needed to assign prior distributions to β0d,0 for d = 1, . . . ,D.

We considered β0d,0 ∼ N(0,100), ∀d and independently distributed. The other model

components are analogously defined as the previous models. We named this Model 5 as

”Skew normal model with random walk effect”.

Therefore, the linear functions of area-level auxiliary variables for all five models are:

Model 1: μd = β0 +β0d +β1xd

Model 2: μdt = β0 +β0d +ζ0t +β1xdt

Model 3: μdt = β0 +β0d +ζ0t +β1xdt +β1dxdt
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Model 4: μdt = β0 +β0d +ζ0t +β1xdt +(β1d +ζ1t)xdt

Model 5: μdt = β0 +βd +β0d,t +β1xdt

The models are evaluated in Section 4. Model 1 is fitted based on 2016 survey data

(direct estimates of total gross service revenue by domain) whereas Models 2 to 5 take

into account 10-year (2007–2016) data. Model comparisons are carried out considering

direct and model-based estimates for 2016.

4. Results

Parameter and small domain estimates for the models defined in Section 3.1 to 3.4

(Tables 3 and 4) were obtained via MCMC (Markov chain Monte Carlo). All results cor-

respond to 100,000 MCMC sweeps, after a burn-in of 50,000 iterations. The chain was

subsequently thinned by taking every 5th sample value. The Gelman and Rubin (1992)

statistics are less than 1.05 for all estimated coefficients and fitted models, showing

convergence of chains. Computational details of how to implement MCMC estimation

procedure and corresponding Winbugs code are displayed in the Appendix. It also con-

tains the full conditionals of the model described by the equations in (1) as in Ferraz

and Moura (2012).

The auxiliary information, such as number of employees, total wages and number of

establishments, were obtained from the business register used as the BASSS sampling

frame. Model selection procedures showed that simultaneous inclusion of those variables

was not adequate since they are highly correlated. Taking into account economic analy-

sis, total wages was chosen as the only explanatory variable for the small area estimation

models.

Both response (total gross service revenue) and auxiliary variables (total wages) are

expressed in millions of Brazilian currency (Reais-R$). The estimated wages coefficients

are positive, as anticipated, since the total revenue per domain might increase with

the investment in the labor factor. The estimates of the asymmetry coefficient are

positive for all models in accordance with the usual pattern of economic data (positively

asymmetrical distribution). Nevertheless, the estimated values of this coefficient in

Models 2 to 5 are about half of the value in Model 1.

When estimates are compared, the highlight is the variance reduction of the domain

random effect on the intercept in the presence of random effects on the slope in Models 3

or 4. Also, the domain random effect on the intercept in Model 2 is considerably greater

(4.884) than the time random effect (0.267). Similarly, in Models 3 and 4, the domain

random effects have higher coefficients than the estimates of time random effects. In

addition, the posterior mean for the intercept parameter in Model 5 exceeds more than

twice the estimated values for other models.

The noticeable reduction of the intercept domain random effect variance from Model

1 to Model 3 suggests the need for a domain random effect on the slope indicating that

the relation between direct estimates and auxiliary variables is not the same for all

domains.
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Table 3. Summary of hyperparameters’ posterior distributions – Models 1, 2 and 5 -

domain and time random effects on the intercept
Model 1 Model 2 Model 5

Parameter
Mean

Standard

Deviation

Percentile
Mean

Standard

Deviation

Percentile
Mean

Standard

Deviation

Percentile

2.5% 97.5% 2.5% 97.5% 2.5% 97.5%

β0 3.404 1.592 0.334 6.619 3.085 0.460 2.207 4.007 8.185 2.783 2.434 13.510

β1 1.953 0.159 1.660 2.300 2.379 0.075 2.234 2.526 2.561 0.099 2.372 2.760

λ 9.174 5.195 2.922 22.390 3.505 0.319 2.912 4.161 4.424 0.486 3.555 5.445

σ0 5.452 1.589 2.370 8.799 4.884 0.721 3.666 6.473 2.442 1.920 0.109 6.936

σζ0
- - - - 0.267 0.225 0.008 0.836 - - - -

σξ0
- - - - - - - - 2.411 0.344 1.758 3.111

aφ 0.321 0.044 0.240 0.414 0.302 0.013 0.277 0.329 0.304 0.013 0.278 0.331

bφ 14.267 4.334 7.193 23.990 4.210 0.430 3.411 5.096 4.054 0.416 3.288 4.914

Table 4. Summary of hyperparameters’ posterior distributions – Models 3 and 4 -

Domain and time random effects on the intercept and on the slope

Parameter

Model 3 Model 4

Mean
Standard

Deviation

Percentile
Mean

Standard

Deviation

Percentile

2.5% 97.5% 2.5% 97.5%

β0 1.757 0.469 0.902 2.737 2.365 0.519 1.422 3.432

β1 2.959 0.174 2.619 3.302 2.707 0.182 2.351 3.073

λ 4.066 0.369 3.379 4.838 4.489 0.427 3.711 5.383

σ0 1.583 0.446 0.765 2.498 1.846 0.456 1.003 2.800

σ1 1.548 0.190 1.196 1.939 1.474 0.188 1.124 1.860

σζ0
0.598 0.367 0.040 1.435 0.222 0.205 0.007 0.760

σζ1
- - - - 0.389 0.133 0.204 0.718

aφ 0.304 0.013 0.278 0.331 0.304 0.013 0.278 0.331

bφ 4.12 0.421 3.355 5.003 4.122 0.419 3.354 4.991

4.1. Model Comparison

Table 5 presents the deviance information criterion (DIC ), the posterior mean of the

deviance (D̄) and the effect number of parameters (pD) for Models 1 to 5. Note that

DIC = D̄+ pD, see Spiegelhalter et al. (2002) for further details about the meaning

of these measures. Because the data are formed by the joint pairs (yd , φ̂d), d = 1, ..,D,

all these measurements can be calculated separately and overall values, as presented in

Table 5, were obtained by summation. The model with the smallest DIC should be the

one that would best jointly predict a replicate data set of yd and φ̂d . It can be seen that

Model 1 (with domain and time effects in the intercept) seems to fit the service revenue

data better than its counterparts. However, the performance of Models 3, 4 and 5 is

similar.
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Table 5. Model selection – Deviance Information Criterion (DIC)

Model DIC pD D̄

Model 1 1,636.3 145.0 1,491.3
Model 2 1,705.5 103.7 1,601.8
Model 3 1,661.5 115.1 1,546.4
Model 4 1,655.9 119.9 1,536.0
Model 5 1,664.7 119.4 1,545.3

The posterior predictive p-values (Meng, 1994), given by P(yrep
d > yd |Data), where yrep

d
is a predictive value of the observed yd under the considered model, were also calculated

for all models with 2016 data. Values around 0.5 indicate that the distributions of the

replicate and the actual values are close. Figure 1 displays the boxplots of the posterior

predictive p-values for all models. According to Figure 1, model 5 seems to fit best

the 2016 BASSS data. Additional information on precision and bias of small domain

estimates follows next to enhance the analysis.

Figure 1 - Posterior predictive p-values of model-based estimates

Model-based estimates are biased, although more precise in general. The estimation

procedure aims to balance the trade-off between variance and bias, producing estimates

with good precision and little bias as possible. To compare the model performances,

precision of estimates and relative differences of the model-based and direct estimates

are presented. Figure 2 displays the improvement in coefficients of variation (CVs)

for model-based estimates in relation to the direct estimates. Model 1 reduces the

coefficients of variation of the small domain estimates with respect to the direct ones

in 93.7% of the cases and Models 2 to 5 produce estimates with better precision for all

domains. There is evidence that Model 2 provides estimates with better precision than

the others. Nevertheless, considering that National Statistical Institutes may suppress

the publication of estimates with CV greater than 20% as a quality threshold, Models 2,
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3 and 4 do not differ in this aspect. Model 2 has 92.1% of domain estimates with CV

below the threshold. This is achieved for 90.8% of the domains in the case of Models 3

and 4, but in only 81.6% of Model 5 estimates.

Figure 2 - Coefficients of variation of direct and model-based estimates

The analysis of the relative differences of model-based and the direct estimates(Model−Direct
Direct %

)
allows investigating the presence of bias. Relative differences for Mod-

els 3 and 4 that incorporate random slopes are closer to zero compared to those from

models with random intercept only, as illustrated in Figure 3. In addition, the symmetric

distribution for Model 5 relative differences, centered at zero, is good evidence against

bias.

Figure 3 - Relative differences of model-based and direct estimates

The deviance information criterion and the posterior predictive p-values, together

with precision and bias of small domain estimates, show that Models 3 and 4 exhibit

similar performance. Results for Model 5, with comparable DIC value, indicate a slight

improvement on the bias, but a disadvantage regarding the precision of estimates. How-

ever, Model 5 presents the best performance with respect to the predictive p-value

statistics.
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Considering all these measures when comparing Models 3, 4 and 5 and the quality

threshold for the precision of estimates, the random walk time model (Model 5) can be

recommended to produce small domain estimates for the service sector survey.

4.2. Model Diagnostics

We carried out an analysis of the standard residuals, rd =
(yd−μd)√

φd
. Since the parameters

μd and φd are unknown, they were replaced by their respective posterior means to

obtain the r̂d statistics. According to Genton (2004), if yd is skew normal distributed,

the statistics r̂2
d is approximately χ2

1 . Figure 4 exhibits residual plots for the application

of Model 5 to the BASSS data. The histogram of the r̂d statistics shows that they have

positive skewness. QQ-plots and corresponding envelopes are also presented with lines

for the 5th percentile, the mean and the 95th percentile of each observation based on

the estimates of squared standard residuals, r̂2
d . The random variable r̂2

d also enables

marginal model checking and detection of outlying observations. The simulated envelope

graph plotted to validate the skew-normal Model 5 indicates a few points outside the

confidence bounds.

Figure 4 - Histogram and qqplot - Model 5 residuals

We also investigated the relationship between the relative differences and the domain

sample sizes (Figure 5) for Model 5 estimates. Although the domain sample sizes are all

very modest, with maximum value 16, large relative differences are associated with the

smallest sample sizes. The negative relative difference of almost 40% for a sample size of

16 enterprises deserves mention. It refers to a domain whose economic activity is coded

as 9001 - Performing arts, shows and complementary activities, with unstable demand

since these services are not essential and, therefore, subject to income fluctuations and

seasonality. Other domains with a sample size greater than 10 for which the relative

differences are beyond the limits of 20% are related to economic activity 9313 - Fitness

activities, which are constantly changing and very diverse (currently the traditional gym
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centers coexist with other smaller businesses such as Pilates studios and the services of

personal trainers).

Figure 5 - Relative differences (%) by domain sample sizes - Model 5

5. Conclusions

The small domain estimation models proposed in this article showed good performance

in improving the precision of estimates of gross service revenue by state and economic

activity in the Brazilian Annual Service Sector Survey. The use of skew normal models

leads to estimates with much better precision than the direct estimates. Moreover,

for most domains, the coefficients of variation are below 20%, which could allow their

publication. The skew normal time models with domain and time random effects on

the intercept and slope exhibit promising performance. However, the presence of bias

is still noted. This is better in Model 5 (Skew normal model with random walk effect),

which shows some balance between estimates that exceed or not the direct estimates.

Nevertheless, even considering the modest domain sample sizes, there are some domains

for which values of relative differences are too high. Thus, despite the relevant gains

in precision, the issue of controlling bias requires additional studies. It is important to

highlight that this work was carried out using real survey data, focusing on the production

of official statistics. Future work is planned to investigate new models to overcome the

difficult problem of borrowing strength from domains associated with similar economic

activities.
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COMPUTATIONAL APPENDIX

Stochastic representation

Samples from skew normal density can be generated using the following stochastic rep-

resentation:

yd |ηd ,μd ,λ ,φ 2
d ∼ N(μd +φdδdηd ,φ 2

d (1−δ 2
d )) and ηd ∼ HN (0,1), d = 1, ...,D

where HN(a,b) denotes a half-normal distribution with location and scale parameters a
and b, respectively. This stochastic representation is useful for implementing the skew

normal distribution in statistical packages, such asWinBUGS (Spiegelhalter et al., 2002).

Full conditional distributions for Model 1 as in Ferraz and Moura (2012)

π(σ2
0 ) ∼ IG

[
a0 +

D
2
,a0 +

1
2

D

∑
d=1

(μd −xt
dβ )2

]
,

π(β ) ∼ N

⎛
⎝[

σ2
0 Ω−1

β +
D

∑
d=1

xdxt
d

]−1 D

∑
d=1

xd μd ,

[
σ2

0 Ω−1
β +

D

∑
d=1

xdxt
d

]−1
⎞
⎠ ,

π(μd) ∼ N

⎡
⎣( (yd −

√
φdwdδd)

φd(1−δ 2
d )

+
xt

dβ
σ2

0

)(
1

φd(1−δ 2
d )

+
1

σ2
0

)−1

,

(
1

φd(1−δ 2
d )

+
1

σ2
0

)−1
⎤
⎦ ,

π(Wd) ∼ N

⎡
⎣( δd(yd −μd)√

φd(1−δ 2
d )

)(
1+

δ 2
d

(1−δ 2
d )

)−1

,

(
1+

δ 2
d

(1−δ 2
d )

)−1
⎤
⎦ I(wd>0),

where the symbol Y ∼ IG(a,b) generically denotes that Y is inverse gamma distributed,

that is, Y−1 ∼ Ga(a,b), and N(a,b)I(wd>0) denotes a truncated normal distribution with

parameters a and b.

There are no closed forms for the full conditional distributions of φd , aφ , bφ and λ .
Nevertheless, Gibbs sampling with Metropolis-Hasting steps can be used to sample from

them. The transition distribution for λ may be normal with the variance tuned for

appropriate chain movements. The proposed distributions for φd , aφ , bφ can be gamma

with the mean and variance updated with chain movement.
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WinBUGS code

model

{
# Model 5

# Prior distributions

aphi ∼ dgamma(0.01,0.01)
bphi ∼ dgamma(0.01,0.01)
beta0 ∼ dnorm(0,0.001)
beta1 ∼ dnorm(0,0.001)
sigmad0 ∼ duni f (0,100)
sigmadt0 ∼ duni f (0,100)
Lambda ∼ dnorm(0,0.01)

# Function of the hyperparameters

sigma2d0 ← pow(sigmad0,2)
taud0 ← 1/sigma2d0
sigma2dt0 ← pow(sigmadt0,2)
taudt0 ← 1/sigma2dt0

# Model 5 description

f or(d in 1 : Ntot){
ytot[d]∼ dnorm(mus[d], taus[d])
mus[d]← mu[d]+delta[d]∗ sqrt(1/invphi[d])∗ t[d]
mu[d]← beta0+bd0[domid[d]]+bdt0[domid[d], timeid[d]]
+beta1∗ saltot[d]
delta[d]← lambda[d]/(sqrt(1+ pow(lambda[d],2)))
lambda[d]← Lambda/sqrt(n[d])
t[d]← dnorm(0,1)I(0,)
thetasn[d]← mu[d]+ sqrt(2/3.14159265359)∗delta[d]∗ sqrt(1/invphi[d])
as[d]← (n[d]−1)/2
bs[d]← (n[d]−1)∗ invphi[d]/2
phiest[d]∼ dgamma(as[d],bs[d])
phi[d]← 1/invphi[d]
invphi[d]∼ dgamma(aphi,bphi)
taus[d]← invphi[d]∗ (1/(1− pow(delta[d],2)))
# Standardized residuals

res[d]← (ytot[d]−mu[d])∗ sqrt(invphi[d])
# Squared standardized residuals

dest[d]← pow((ytot[d]−mu[d]),2)∗ invphi[d]

# DIC calculation

D1[d]← 1.837877− log(taus[d])+ taus[d]∗ (pow(ytot[d]−mus[d],2))
D2[d]←−2∗as[d]∗ log(bs[d])−2∗ (as[d]−1)∗ log(phiest[d])+
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2∗bs[d]∗ phiest[d]+2∗ loggam(as[d])
D[d]← D1[d]+D2[d]

# Random walk

# Distributions of coefficients

}
f or( j in 1 : Ndom){
bd0[ j]∼ dnorm(0, taud0)
}
f or(l in 1 : Ndom){
f or(k in 2 : Ntime){
bdt0[l,k]∼ dnorm(bdt0[l,k−1], taudt0)
}
}
f or(l in 1 : Ndom){
bdt0[l,1]∼ dnorm(bdt0 f [l], taudt0)
}
f or(m in 1 : Ndom){
bdt0 f [m]∼ dnorm(0,0.001)
}
# predictive p-value

f or(i in ii : ie){
ypred[i]∼ dnorm(mus[i], taus[i])
ppred[i]← step(ytot[i]− ypred[i])
}
}


